2021.02.24
This article concludes the section on “Parallel Connections of LDO Linear Regulators.” In this series of articles, we have explained methods for connecting LDOs in parallel to increase the output current of a power supply circuit and to avoid exceeding the allowable dissipation for individual LDOs.
As explained in ”About Parallel Connections of LDO Linear Regulators” parallel connection of LDOs is a method that has been around for quite some time. Basically and ideally, by for example connecting two 1 A LDOs in parallel, twice the current or 2 A is obtained, and from the standpoint of distribution of losses, when two devices connected in parallel the losses of each are halved.
However, if the outputs of LDOs are simply connected together directly, because there is a difference in the output voltages of the LDOs, the load (output) current is not distributed between them. In general, the tolerance in the output voltage of an LDO is stipulated to be within plus/minus a few percent of the nominal voltage, and as a practical matter, the output voltages of LDOs connected in parallel are never exactly the same. Hence a contrivance in the circuit is needed in order that the output current is distributed among the parallel-connected LDOs.
As parallel connection methods that distribute the output current, a method using diodes and a method using ballast resistors were presented. Both methods distribute the output current by relaxing the difference in the output voltages of the parallel-connected LDOs, but both have advantages and drawbacks. Moreover, it is difficult to perfectly realize “double/half” operation as per principles, and these methods must be used with the understanding that compromises are inevitable, given the output voltage precision, load regulation, and other power supply characteristics.
Below, the circuits of each of the parallel connection methods, equations representing the principles involved, and important points are presented.
Parallel Connection Using Diodes | Parallel Connection Using Ballast Resistors |
---|---|
![]() |
![]() |
Relations for Balancing of Output Voltages | |
VOUT1-VF1(IOUT1)=VOUT2-VF(IOUT2) VOUT1:LDO1 output voltage |
VOUT1-IOUT1×RBALLAST=VOUT2-IOUT2×RBALLAST VOUT1:LDO1 output voltage |
Key Points | |
|
|
This is a hand book for understanding the basics of linear regulators, such as operating principles, classification, characteristics by circuit configuration, advantages and disadvantages. In addition, typical specifications of linear regulators, efficiency and thermal calculations are also explained.
This is a hand book for understanding the basics of linear regulators, such as operating principles, classification, characteristics by circuit configuration, advantages and disadvantages. In addition, typical specifications of linear regulators, efficiency and thermal calculations are also explained.